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Abstract

The Dead Sea Scrolls are of great historical significance.
Lamentably, in the decades since their discovery, many
fragments have deteriorated. Fortunately, low-resolution
grayscale infrared images of the Palestinian Archaeologi-
cal Museum plates holding the scrolls in their discovered
state are extant, along with recent high-quality multispec-
tral images by the Israel Antiquities Authority. However,
the necessary task of identifying each fragment in the new
images on the old plates is tedious and time consuming to
perform manually, and is often problematic when fragments
have been moved from the original plate.

We describe an automated system that segments the new
and old images of fragments from the background on which
they were imaged, finds their matches on the old plates
and aligns and superimposes them. To this end, we de-
veloped a deep-learning based segmentation method and a
cascade approach for template matching, based on scale,
shape analysis and dense matching.

We have tested the proposed method on five plates, com-
prising about 120 fragments. We present both quantitative
and qualitative analyses of the results and perform an abla-
tion study to evaluate the importance of each component of
our system.

1. Introduction

The Dead Sea Scrolls, discovered in caves of the Judean
desert during the years 1947–1956 and dating to the cen-
turies around the turn of the eras, hold great historical, reli-
gious and linguistic significance. The tens of thousands of
parchment and papyrus fragments include the oldest known
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Figure 1. Illustration of the matching problem. Left: two
samples of recent color images of fragments taken from plate
4Q57 382. Right: an old infrared image of plate M43.022. Our
system successfully locates the two fragments on the left in the
grayscale image of the whole plate. All images are provided cour-
tesy of the Leon Levy Dead Sea Scrolls Digital Library, Israel An-
tiquities Authority; color photographer Shai Halevi, infrared by
Najib Anton Albina.

manuscripts of many works later included in the Hebrew
Bible canon, along with noncanonical and extra-biblical
manuscripts in Hebrew, Aramaic and Greek that preserve
important evidence of the diversity and richness of religious
thought in late Second-Commonwealth Judea.

Shortly after the scrolls were discovered, grayscale in-
frared images were taken by the Palestinian Archaeolog-
ical Museum (PAM) of each plate on which they were
stored, often containing dozens of small fragments. In
the decades since their discovery, many plates have been
reorganized. Currently, high-quality multispectral images
are being taken at the Israel Antiquities Authority, and are
offered to scholars and the public on the net (at http:
//www.deadseascrolls.org.il).

One of the tasks in this digitization project is that of lo-
cating each of the individual fragments on the old grayscale
images and visually investigating how well they have been
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Figure 2. System overview. Our system begins by segmenting the
old plate (top left) and the new color image (bottom left). Seg-
mentation results of the old plate and the new fragment are shown
at the top middle and bottom middle, respectively. Finally, after a
match is found, the system aligns the two fragments (seen on the
right).

preserved (see Figure 1). This is a wearisome chore since
the fragments on a plate can look very similar and be ex-
tremely small – often no more than a square centimeter in
size – and since many fragments are no longer on the same
plate as when first imaged. Moreover, once the fragment is
located, the conservator needs to visualize in her mind how
the newer image is aligned with the old to reason how well
it has been preserved. There is currently no automated tool
to aid in this process.

We have developed a two-step method that both auto-
matically locates a given fragment and aligns it against the
old images. This will both save time for the conservation
team and provide scholars with a composite image of the
new segment overlayed on top of the old one.

First, we segment the fragments on the old plates to
obtain a “pool” of candidates. This is challenging as the
grayscale images of the old plates are of low resolution, the
background has similar intensity to that of the scroll and
there are shadows. We applied both an unsupervised tech-
nique based on edge detection [9] and a deep-learning tech-
nique that requires some manual labeling to train. Once we
have a set of candidates, we employ a cascade approach to
match the new high-quality color fragments to the corre-
sponding low-quality grayscale candidate. The cascade is
composed of a coarse scale test and a coarse shape test, fol-
lowed by a more detailed dense matching [19, 14] test that
compares the texture of the two fragments. Finally, we run
dense matching again to align the matched fragments. The
overall system is depicted in Figure 2.

We tested our method on five different plates contain-
ing a total of 120 fragments and present both quantitative
and qualitative matching and alignment results. We further
perform an ablation study to investigate the effectiveness of
our system when removing some of the test in our matching
cascade.

Our contributions include the following: (i) a deep-
learning method for segmentation that is able to work under

Figure 3. Alignment example. Left: new high-quality fragment
image; middle: cropped fragment from old grayscale image; right:
the fragment from the old image warped onto the recent image.

challenging conditions, which we compare with an edge-
based method; (ii) a cascade approach for template match-
ing, wherein each step in the cascade is responsible for a
different visual feature (scale, shape and texture); and (iii) a
dense-alignment method to help visualize any degradation
a fragment suffered and to enable one to benefit from the
combination of details visible in the old and new images.

2. Related work
Our method is related to two fundamental lines of work

in vision: image segmentation and image registration.

Image segmentation. Image segmentation is one of the
most studied and fundamental problems in computer vi-
sion. Its goal is to separate an image into multiple re-
gions, where typically each region should correspond to
some meaningful information, for example, objects or ob-
ject parts [6, 40, 18, 20, 1, 29]. Early approaches to im-
age segmentation include thresholding [26], edge detection
[33], clustering [7, 28, 37], normalized cuts [35], active
contours [5, 17, 39] and watershed [23, 34, 24].

Recently, deep convolutional neural networks (CNNs)
which have proven successful in various computer vision
applications [16, 12, 36], have also been applied to image
segmentation. Specifically, fully convolutional neural net-
works (FCNNs) were found to be extremely useful for this
task since they are competent in end-to-end training and fea-
ture generation and allow one to work with different input-
image sizes. However, the drawback of using CNNs for seg-
mentation is a decrease in segmentation resolution caused
by pooling layers. This drawback hinders their applicabil-
ity to the task at hand, as manuscript-fragment segmentation
requires single-pixel level accuracy.

A number of encoder-decoder architectures have been
suggested to cope with this problem, where the spatial in-
formation is gradually recovered by a decoder. These in-
clude: FCN [20], which performs semantic segmentation
using end-to-end convolutional neural network and intro-
duces skip connections that lead to better performance of
deconvolution; SegNet [1], which transfers pooling indices
to a decoder from an encoder that makes it more memory



Figure 4. Data preparation for training a deep segmentation
network. Input image A is transformed into the target image C
via auxiliary manually-processed image B.

efficient; and u-net [29], which was shown to be a good so-
lution for semantic segmentation relying on low amounts of
data. Of the aforementioned architectures, u-net is the most
applicable to a situation such as ours where the training set
is limited, and we therefore based our network on this ar-
chitecture.

Image registration. Image registration deals with finding
local correspondences between images that depict the same
content but have visual differences. Those differences can
be due to illumination, motion blur, view point changes, im-
age quality, etc. A thorough survey can be found in [41].

A common pipeline for image registration is composed
of applying a local feature detector [31, 30, 13] to identify
interest points in the image, extracting discriminative local
features around those interest-points [21, 2, 4], matching
them [3, 8, 11] and – if needed – aligning one image to an-
other (e.g. by solving for an affine transformation between
the images).

A different setting of the problem, one that can be viewed
as a generalization of the local approaches, is optical flow,
where the goal is to map each pixel in one image to its corre-
sponding pixel in the other [15, 22]. Optical-flow methods
lack the discriminative power of local features but enjoy the

Figure 5. Extracting training patches for segmentation. By
traversing the boundary of the target (left) and input (right) im-
ages, we extract training patches where each point on the bound-
ary corresponds to the center of the patch. Blue squares represent
patches and red curves show simultaneous traveling by boundaries
of input and target images.

advantage of finding dense correspondence where the local
methods are sparse in nature.

Recently, a marriage of the two, SIFT flow [19], has been
proposed. In this method, SIFT features [21] are extracted
at each pixel, and optical flow is computed between SIFT
features instead of raw image intensities.

In addition to the general registration approaches de-
scribed above, there are volumes of work specifically ded-
icated to document registration. Some approaches use line
structure [10], template matching [27], projective geome-
try [32] and coarse-to-fine refinement [38].

The work most related to ours is probably [38], which
applies a global alignment step followed by a local re-
finement step to handle misalignments. The method de-
scribed herein is different in several respects: First, that
work assumes the fragments have already been segmented,
whereas we handle this task as well. Second, it assumes
that a matching between a pair of fragments has already
been performed, while we handle the matching task as well.
Finally, we register the fragments using dense correspon-
dence, which can express finer warping.

3. Method
In the next sections, we describe the pipeline that we

have used to extract the fragments out of the plates and to
separate them from the background. We first describe the
segmentation algorithm that we used for the newly taken
color images of the Dead Sea Scrolls, followed by a descrip-
tion of the pipeline for the old plates that were photographed
during the 1950’s.

3.1. New image segmentation

Recently, the Israel Antiquities Authority has begun a
process of taking high resolution images of the all the Dead
Sea Scroll fragments. They use a high resolution multi-
wavelength imaging camera. Images of fragments are taken



Figure 6. Network architecture for Deep Segmentation. Our network is based on an encoder-decoder u-net architecture [29] with three
levels and an output level.

in different wavelengths in both infrared and visible light,
and a color image is created as a composition of a subset
of those. Each fragment is photographed on a black back-
ground together with the fragment label, a color target and
ruler 1.

Since the fragments are placed on a dark felt surface,
separating them from the background is not a simple task.
The ink on the fragment closely resembles the dark back-
ground in color and the material preservation condition is
generally poor, thus there are many holes in the fragment.

The first step in our segmentation pipeline is to extract
connected components from the image and detect the frag-
ment boundaries. We do this by converting the color image
to grayscale and then setting a low threshold on the back-
ground intensity to extract the foreground components. This
is followed by a close morphological operation and median
filtering to remove noise and small holes.

Finally, we extract connected components from the bi-
nary image, disregard ones whose size is much smaller than
the full image size and, from the remaining connected com-
ponents, choose the one that is closest to the center of the
binary image. This seemingly simple pipeline manages to
segment the fragments well enough to perform matching.

3.2. Old plate segmentation

The older images of the plates that were photographed
during the 50’s require a different approach for fragment
background separation. The images are grayscale and each
plate can contain many small fragments. To segment them,
we use an edge-detection segmentation method followed by
connected components extraction. We use a state-of-the-art

edge detection method as described in [9]. This method is
based on a learned structured forests model [25] to detect
edges.

This step is followed by setting a threshold on the
grayscale edge image and computing connected compo-
nents. We have found that extremely small connected com-
ponents are usually noise and not real fragments; thus we
discard connected components with area smaller than 0.1%
of the whole plate. There are a few drawbacks with this
method. First, if two fragment boundaries touch one an-
other, it will not segment them accurately but will leave
them connected together. A second drawback of this algo-
rithm is that it is not able to handle shadows very well and
often marks them as part of the fragment instead of mark-
ing them as background. Many of the fragments indeed do
have shadows reflected on the plate because they were pho-
tographed at some small distance from the plate. For those
fragments, the proposed edge-based segmentation method
might detect shadow boundary as the true fragment bound-
ary. For domain researchers whose goal is to re-connect
fragments this poses a problem. However, for the task of
search and alignment it might be suffice.

Nevertheless, for more accurate results, we have devel-
oped a deep-network based segmentation algorithm. This
algorithm is trained on manually segmented plates, and is
able to remove shadow reflection more accurately. As op-
posed to our edge-based method, it is supervised, thus re-
quiring training data that in our case must be manually la-
beled.



Figure 7. Shape test. On the left two column are segmented im-
ages of a candidate fragment pair. On the right are the two seg-
mented fragments on top of one another. It can be visually seen
that their Hamming distance corresponds to measuring how well
the shapes overlap.

3.3. Network-based segmentation

Some of the scroll fragment images have a background
that looks similar to the foreground near border points, and
for this reason, correct labeling of each pixel is a difficult
task even for humans who may mark some of border neigh-
boring points incorrectly. To overcome these difficulties, a
model based on a u-net architecture [29] was applied for
binary segmentation of fragments.

Data preparation. For training, 21 grayscale images of
scroll fragments were manually separated from the whitish
background and from shadows, where they occur. For
this purpose, initial photos (Figure 4A) were manually pro-
cessed using a basic photo editor, where a background or
a shadow were painted black, acquiring images of scroll
fragments only (Figure 4B). Binary images of each of the
grayscale images were created by labeling every pixel in the
grayscale images by a binary label, where the foreground
was labeled 1 and its background 0. Thusly, the back-
ground and the foreground were transformed into a black
and white image (Figure 4C) by the following rule, using
Iverson brackets: Ci,j = [Ai,j = Bi,j ], where Ai,j and
Bi,j are the pixel values of imagesA andB, respectively, at
the corresponding location (i, j) andCi,j is the resulting bi-
nary value of the binary image C at the same location (i, j),
i ∈ {1, ..., w}, j ∈ {1, ..., h}, where w and h are the width
and the height, respectively, of images A, B and C. (See
Figure 4.)

By traversing the border of the segment in every binary
image, 64×64 patches were extracted from both the origi-
nal images A and their corresponding binary images C. Ev-
ery boundary point served as the center of each patch. The
patches were cropped from both A and C images by simul-
taneous following C’s boundary and corresponding location
on image A – as presented in Figure 5. Figure 4C shows the
target image C for the network.

Network architecture. Our network is an en-
coder/decoder type of architecture based on the u-net
model of fully convolutional network suggested in [29]. In

this model, the spatial dimension of the image is gradually
reduced by the encoder with max-pooling layers, whereas
the decoder retrieves spatial dimension and details of
the image. The model is suitable for a case of a limited
number of training images, nevertheless achieving precise
segmentations.

Our network architecture is composed of two paths: a
contracting path (left) and an expansive one (right), which
can be viewed as four levels l1, l2, l3, plus output, as illus-
trated in Figure 6. Each level li, i = 1, 2, 3, consists of
two 3×3 convolution layers and one 2×2 max pooling layer
with a stride of 2 pixels on levels l1 and l2, where each
convolution was followed by batch normalization (BN) and
rectified linear unit (ReLU) layers.

A concatenation of the feature maps from each level li−1
and li was performed by upsampling the feature map at level
li with a 3×3 convolution. After concatenation, two 3×3
convolutions were applied, each convolution followed by
batch normalization and ReLU layers. At the output level
the final activation function was sigmoid instead of ReLU.

Network training and the loss used. As described
above, the network was trained using (X,Y ) as a training
data, where X is a set of 64×64 grayscale images and Y is
a set of 64×64 binary images. For every i ∈ {1, . . . ,m}
Y (i) is the target image for X(i), where m is the size of
the training data. ADADELTA was used as an optimization
method with learning rate of 0.01 and a batch size of 1200.
The loss function was defined as follows:

loss = 1
5n

∑
i,j ‖Yi,j−Ŷi,j‖1+‖Ŷi−1,j−Ŷi,j‖1+‖Ŷi,j−1−

Ŷi,j‖1 + ‖Ŷi−1,j−1 − Ŷi,j‖1 + ‖Ŷi−1,j+1 − Ŷi,j‖1.

where n is the batch size and Ŷ is the network prediction.
This loss function encourages both adherence to the ground
truth as well as additional smoothness of the predicted tar-
gets Ŷ .

Segment extraction. A trained network with a threshold
θ was used on a plate image I providing segments predic-
tion image Ȳ := [Ŷ (I) > θ] · I . Each segment was then
extracted using a connected-components algorithm.

3.4. Template matching and alignment

After applying segmentation, we obtain a pool of new
fragments (taken from the recent high-quality color images)
Si, i = 1, . . . , n, that need to be matched against a pool of
old fragments (taken from the old grayscale images) Pj , j =
1, . . . ,m. Next, we employ a cascade approach, in which
each step handles a particular visual feature of a candidate
pair (Si0 , Pj0).



Plates Matches Edge Segmentation Deep Segmentation
#TP #FP Recall FPR #TP #FP Recall FPR

4Q57 363, M42.002 5 3 0 60% 0.0% 3 1 60% 1.3%
4Q57 382, M42.000 8 5 17 63% 5.3% 8 24 100% 7.6%
4Q57 382, M43.022 13 5 8 38% 2.7% 8 9 62% 3.0%
4Q57 382, M43.162 3 1 15 33% 2.6% 1 13 33% 2.2%
4Q57 387, M43.029 18 8 76 44% 4.5% 5 91 27% 5.4%

Table 1. Matching results. For each set of recent fragment images and corresponding grayscale plate, we show the number of correct
matches found (true positives) – out of the total number of fragments on the plate, as well as the number of false matches (false positives),
the true positive rate (recall) and false positive rate (FPR).

Scale test. First, we apply a simple scale test to filter out
candidate pairs in which one fragment is much larger than
the other. The new images Si were taken at an aspect ra-
tio that is about 3 times larger than that of the old im-
ages. Assume Si0 is k×l pixels and Pj0 is t×p pixels. If
|k − 3t| > Tscale or |l − 3p| > Tscale, we discard the pair.
We allow a Tscale that is large enough to serve as a coarse
test and will never filter out correct matches.

Shape test. Now that we have filtered out candidate pairs
that are vastly different in scale, the second appearance fea-
ture we filter for is shape. We found the following simple
test to be extremely useful: resize Si0 to the size of Pj0 , viz.
t×p, and take both segments’ binary masks by threshold-
ing them (since we applied segmentation, the background is
constant and a simple threshold operation is enough). De-
note by S′i0 and P ′j0 the binary masks, we compute their
Hamming distance ‖S′i0 − P

′
j0
‖ =

∑t
α=1

∑p
β=1(s′α,β xor

p′α,β)/(tp) and discard the candidate pair if this value is
above a predefined threshold Tshape. Again, Tshape is set such
that this test will filter out fragments that are markedly dif-
ferent, but will be coarse enough not to eliminate any cor-
rect matches. This process is illustrated in Figure 7.

Dense matching. The final step in our cascade is based on
dense matching and compares the texture and content of the
two images at a finer resolution. We leverage the SIFT flow
algorithm [19]. SIFT flow begins by extracting SIFT [21]
descriptors at every pixel of the fragments. Next, the algo-
rithm aims to find the flow w(p) = (u(p), v(p)), that is,
the displacement of the SIFT feature at pixel p = (x, y)
at the first image to its location (x + u(p), y + v(p)) at
the second image. This is done by solving the following
optimization problem: Let s1 and s2 be the two SIFT im-
ages to match. Set ε contains all the spatial neighborhoods
(a four-neighbor system is used). The energy function for

Figure 8. Segmentation results. We compare between edge seg-
mentation (left) and deep segmentation (right). Notice that shad-
ows remain in edge segmentation, while deep segmentation suc-
cessfully eliminates them.

SIFT flow is defined as:

E(w) =
∑
p

min
(
‖s1(p)− s2(p + w(p))‖1, t

)
+ (1)

∑
p

η
(
|u(p)|+ |v(p)|

)
+ (2)

∑
(p,q) ∈ ε

min
(
α|u(p) + u(q)|, d

)
+ (3)

min
(
α|v(p) + v(q)|, d

)
Term (1) constrains the corresponding SIFT features to be
similar, term (2) regularizes the flow vectors so that they
are small (η is a parameter) and term (3) forces adjacent
pixels to have similar flow values. Optimization is done
using dual-layer loopy belief propagation.

To use SIFT flow as a matching test, we resize the pair
of fragments to be the same, apply SIFT flow and use the
minimal value of the energy function as a matching score.



Figure 9. Qualitative alignment results. From left to right: newly taken image of a fragment from set 4Q57 382, corresponding fragment
from plate M43.022, registration results of the two; newly taken image of a fragment from set 4Q57 382, corresponding fragment from
plate M42.000, registration of the two.

If the score is below a predetermined threshold Tflow, then
the candidate pair Si0 , Pj0 is considered a match.

Alignment. Finally, to align the two matched fragments
Si0 , Pj0 , we resize Pj0 to the dimensions of Si0 (the new
images Si were taken at higher resolution), run SIFT flow
again and warp Pj0 using the flow w0 obtained. The align-
ment is illustrated in Figure 3.

4. Experiments

We apply our proposed pipeline to sets 4Q57 363,
4Q57 382 and 4Q57 387 of the recent high-quality color
images, consisting of fragments of Isaiah found in Cave 4
at Qumran written on parchment and dating to the Hero-
dian period. Roughly, 4Q57 363 corresponds to PAM plate
M42.002, 4Q57 382 corresponds to M42.000, M43.022
and M43.162 and 4Q57 387 corresponds to M43.029.

There are five fragments in 4Q57 363, all of which ap-
pear on plate M42.002, along with 12 other fragments in
M42.002 that are not related to 4Q57 363. There are 18
different fragments in 4Q57 382, 8 of which appear on
M42.000, 13 on M43.022 and 3 on M43.162. Some of
the fragments appear on more than one PAM plate. Also,
M42.000, M43.022 and M43.162 contain, respectively, 10,
4 and 29 fragments that are unrelated to 4Q57 382. Finally,
4Q57 387 contains 54 fragments; 18 appear on M43.029
along with 13 unrelated fragments. In our experiments, we
set Tscale to be 400 pixels, Tshape to be 0.3 and Tflow to be
0.7.

4.1. Quantitative results

In each of our experiments, we chose a pair of recent
image set and its corresponding PAM plate, applied both
of our segmentation methods to the fragments and finally
ran our matching and alignment cascade on all candidate
pairs of recent and old fragments. This amounts to a large
number of candidate pairs: when matching 4Q57 363 to
M42.002, there is a total of 85 candidate pairs, but only
5 of them are positive matches; when matching 4Q57 382
to M42.000 there is a total of 324 candidate pairs, only 8

of which are positives; 4Q57 382 to M43.022 – 306 can-
didate pairs, 13 are positives; 4Q57 382 to M43.162 – 576
candidate pairs, 3 are positives and finally when matching
4Q57 387 to M43.029 there is a total of 1674 candidate
pairs to consider, only 18 of which are positives.

We summarize the quantitative results in Table 1. Due to
the imbalance between the amount of negative and positive
samples in our test set, we report matching results in terms
of both the number of correct matches found (true positives)
and the number false matches reported (false positives), and
also give the recall and false positive rates.

As can be seen in Table 1, our method is able to achieve
markedly high recall at low false-positive rates. Notice the
improved performance of the deep segmentation method in
almost all cases.

4.2. Ablation study

To further investigate the effect of the different compo-
nents in our system, we perform an ablation study. To this
end, we repeat the experiments described in Section 4.1 for
plates 4Q57 363-M42.002 and 4Q57 382-M42.000, each
time removing certain tests in our matching cascade. The
results are presented in Table 2. Note that each of the tests in
the cascade contributes to eliminating false matches, where
the most important test is measuring dense-correspondence
using SIFT flow, following by the scale test. Also note that
removing any of the tests does not increase the number of
correct matches.

4.3. Comparison of segmentation methods

We compared the results obtained by the two methods –
edge segmentation and deep segmentation. The first method
enabled the system to extract scroll fragments from a plate
image but failed to distinguish between shadows, back-
ground and scroll edge sections (Fig. 8, left), whereas with
the second method it was possible to isolate scroll fragments
containing written text, thus acquiring the scroll segment
only (Fig. 8, right). It is feasible to find and align frag-
ments obtained by edge segmentation, but the combination
of fragments obtained by edge segmentation cannot lead to
continuous text lines since shadows and edge sections inter-
fere with fragment coupling.



Figure 10. Failure cases. The two leftmost image-pairs present false matches of plates 4Q57 382:M43.022 and 4Q57 382:M43.162,
respectively. The images on the right of the figure present a correct match that resulted in poor registration. Analyzing these and several
other examples showed that such problems are partially due to errors in the color image segmentation and that, generally, mismatches are
more common when matching very small segments, as one would expect.

Plates Matches Scale Shape Flow Edge Segmentation Deep Segmentation
#TP #FP Recall FPR #TP #FP Recall FPR

4Q57 363, M42.002 5 3 3 7 3 4 60% 5.0% 3 3 60% 3.7%
4Q57 382, M42.000 8 3 3 7 5 74 63% 23.4% 8 101 100% 31.9%
4Q57 363, M42.002 5 3 7 3 3 1 60% 1.3% 3 2 60% 2.5%
4Q57 382, M42.000 8 3 7 3 5 38 63% 12.0% 8 72 100% 22.7%
4Q57 363, M42.002 5 7 3 3 3 1 60% 1.3% 3 3 60% 3.7%
4Q57 382, M42.000 8 7 3 3 5 22 63% 6.9% 8 35 100% 11.0%
4Q57 363, M42.002 5 3 7 7 3 21 60% 26.3% 3 15 60% 18.8%
4Q57 382, M42.000 8 3 7 7 6 139 75% 43.9% 8 234 100% 74.0%
4Q57 363, M42.002 5 7 3 7 3 16 60% 20.0% 3 20 60% 25.0%
4Q57 382, M42.000 8 7 3 7 5 114 63% 36.0% 8 186 100% 58.8%
4Q57 363, M42.002 5 7 7 3 3 3 60% 3.8% 3 6 60% 7.5%
4Q57 382, M42.000 8 7 7 3 5 74 60% 23.4% 8 131 100% 41.4%

Table 2. Ablation results. Matching performance when removing various tests from our matching cascade.

4.4. Qualitative registration results

In addition to numerical results for matching, we also
present registration results in Figure 9. As can be seen,
the ink appears faded on the newly taken images while ap-
pearing much sharper on the early grayscale images. Using
such visualizations, scholars and conservators can deduce
the level of deterioration of the scrolls and their preserva-
tion conditions.

4.5. Failure examples

To help analyze the performance of the proposed
method, we give examples of false matches and of a cor-
rect match with poor registration in Figure 10. Such errors
mostly occur when matching very small fragments.

5. Conclusions

Faced with a real-world demand for a robust solution
that can align multiple fragments, we have designed a prac-
tical system that incorporates tools from multiple areas of
computer-vision research.

For fragment segmentation, we proposed an edge-based
segmentation method that does not require training, as well
as a second deep segmentation method for improved perfor-
mance, requiring some initial manual labeling to train. For

matching and aligning segmented fragments, we designed a
cascade method that is able to obtain high accuracy while
maintaining a low false positive rate and is able to handle
fragments that are extremely difficult to locate (see Fig-
ure 1).

The feedback we have received from scholars has been
extremely positive and encouraging. Our system alleviates
much of the difficulty in fragment matching and registra-
tion and will dramatically save time for archaeologists in-
vestigating the scrolls. Superimposing multiple images of
fragments provides scholars with a new tool for determin-
ing how well they have been preserved. Furthermore, our
segmentation method can be used for other preservation ef-
forts as well, for example connecting different fragments of
the same original scroll.
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